摘要

在基于运动想象的脑机接口(BCI)中,特征提取是影响整个系统性能的一个关键部分。共空域模式(CSP)是一种有效的特征提取算法,它能很好地提取与事件相关去同步/同步(ERD/ERS)生理特征相关的节律信息,因而在BCI系统中得到广泛应用。然而,CSP算法的分类性能极大地依赖于EEG信号的滤波频带。一般情况下,大都采用830 Hz的带通滤波器滤波,因为这个宽带包含了产生ERD/ERS想象的mu(812 Hz)和beta(1826 Hz)节律。为了更加精准的定位最佳频带,将830 Hz的宽带滤波细分为大小不等的子带滤波,利用回溯搜索优化算法(BSA)与CSP相结合来选择最优频带,并以分类错误率作为BSA的适应度值(即频带选择标准)。使用该算法对5个受试者的实验数据进行了交叉验证分类实验。实验结果表明,最优频带的平均分类正确率比宽带(830 Hz)可高出7.91%。