摘要

为解决数据流分类过程中样本标注和概念漂移问题,提出了一种基于实例迁移的数据流分类挖掘模型.首先,该模型用支持向量机作学习器,用所得分类模型中的支持向量构建源领域,待分类的当前数据块为目标域.然后,借助互近邻思想在源域中挑选目标域中样本的真邻居进行实例迁移,避免发生负迁移.最后,通过合并目标域和迁移样本形成训练集,提高标注样本数量,增强模型的泛化能力.理论分析和实验结果表明,所提方法具有可行性,相比其它学习方法在分类准确性方面更具优势.

全文