针对降雨量序列的复杂性和随机性,基于马尔科夫链原理,采用聚类分析对降雨量序列进行分类,引入隶属度对样本状态向量进行测算。建立了聚类-模糊马尔科夫降雨量预测模型,并对结果进行了改进。采用全国各地共16个站点的2011-2013年48个降雨量数据作为待测样本进行计算,结果表明:48个预测样本的平均绝对误差为12.4%,误差低于10%的年份占56.25%。精度较高,将模型用于降雨量的预测是合理的,可以为水资源合理规划利用提供依据。