摘要

令U为U-半富足半群的投射元集合.每个H-类含投射元的U-富足半群称为U-超富足半群.这种半群是完全正则半群和超富足半群在U-半富足半群类中的一个共同推广.1941年,Clifford证明了半群S为完全正则半群,当且仅当S为完全单半群的半格.40多年后,Fountain将这一结果推广到了超富足半群上.本文关于U-超富足半群得到了广义Clifford定理.这一结果分别以Clifford和Fountain的上述结果为其推论.