摘要
传统知识图谱链接预测任务忽略了知识之间可能存在的语义层次以及知识的不确定性,导致链接预测结果不佳。针对该问题,文中提出一种高斯层次感知知识图谱链接预测模型。在该模型中,高斯嵌入部分引入实体和关系的高斯分布信息,以实体分布和关系分布之间的距离来衡量实体之间是否存在链接。词向量嵌入部分将学习到的实体和关系的词向量转换为复向量,将词的复向量映射到极坐标系中建模实体的语义层次,以嵌入向量之间的距离来衡量实体之间是否存在链接。根据D-S证据理论,融合两部分得分函数,从而实现准确的知识图谱链接预测。实验结果表明,该模型可以有效地对知识图中实体的语义层次和不确定性进行建模,并且在现有基准数据集上的效果较优于其他方法。
-
单位信息工程大学