摘要
移动机器人在未知环境中的自主探索是机器人研究的重要问题.未知环境的探索策略存在探索过程中定位不确定性较大、决策时间长、探索速率慢和鲁棒性差等问题.采用图神经网络和深度强化学习结合的方法可以有效规避这些问题.本文基于这一架构,提出了一种新的机器人自主探索方法。该方法引入虚拟地标(Virtual Landmarks)概念来描述环境地图,首先基于EM(Expectation Maximum)探索策略来更新虚拟地标所表示的地标存在概率及其对不确定性的估计,然后根据机器人和环境中的信息构建探索图,以此为数据结构来表征环境信息,提高探索策略对地图大小的鲁棒性;再将其输入门控图神经网络,以挖掘数据之间的隐藏信息帮助更新图节点信息;最后,基于门控图神经网络构建双深度Q学习网络(Double Deep Q-learning Network,DDQN),从而降低噪声对动作选择的影响并提高探索策略的性能.我们在仿真环境下进行了实验,并与其他自主探索方法进行了比较.实验证明该探索策略决策时间短,对地图大小变化的鲁棒性好,能够在提高探索速率的同时实现更高的地图精度.
-
单位北京工业大学; 自动化学院