摘要

在处理庞大复杂的点云数据时,传统聚类方法精度低、耗时长并且受离群点影响大,针对以上问题,提出基于疯狂捕猎的柯西反向秃鹰搜索算法(QO-BESCH)的K均值互补迭代聚类优化方法.所提算法构建基于体元包围盒的初始聚类中心选择模型,提升初始化聚类中心质量;提出疯狂捕猎机制,同时融合动态自适应控制算子和柯西反向策略,提升秃鹰搜索算法(BES)的寻优能力,增加寻找聚类中心的成功率;利用QO-BESCH优化K均值聚类(KMC),在减小迭代次数的同时增加搜索效率,得到较好的聚类结果.利用UCI标准数据集对所提算法进行测试,并与8种聚类算法进行对比,实验结果证明了所提算法的优越性.将本研究算法结合PCL点云库应用于ModelNet40点云数据集聚类,结果表明,所提算法可以实现有效聚类,适用性较强.