摘要
针对传统的基于一维用电量数据挖掘分析的用户窃电检测方法检测精度低的问题,提出了一种基于混合神经网络的配电网用户窃电检测方法。首先,为了增强正常用户与窃电用户用电量的特征差异性,采用MTF(马尔可夫变迁场)对一维用电量数据进行图变换,实现用电数据的二维化;同时,为提高模型的准确性及泛化性,引入了用户用电量档案数据。然后,采用混合神经网络分别对预处理后的二维用电图像、档案数据进行特征量提取及融合,以实现配电网用户窃电检测。最后,通过两组对比实验,验证所提方法的有效性和精确性。实验结果表明:与其他模型相比,基于混合神经网络在窃电识别的准确率、查全率及ROC(接受者操作特征)曲线下面积均有较大的提升,具有较好的识别性能。