摘要

当前MapReduce并行编程模型得到了广泛的应用。相对于传统的基于PVM或者MPI的并行编程方式,它在执行时间和处理问题规模等方面有明显优势。针对并行遗传算法的特点,提出基于MapReduce实现一种典型的并行遗传算法——粗粒度并行算法的方法,用以解决大规模变量问题。实验平台采用Hadoop,硬件条件为普通的服务器集群。在多目标优化问题测试中,当问题规模达到一定、处理变量数超过10E 7时,并行算法效率比串行提高数倍,并且能突破内存瓶颈。根据MapReduce自身特点调整其参数,改变并行程度,分析其对并行执行时间的影响。

  • 单位
    自动化学院; 解放军理工大学

全文