摘要

当前区间类型数据的规模越来越大,若采用传统的属性约简方法进行处理,就需要对数据进行预处理,而这会损失原始信息。针对上述问题,提出了区间值决策系统β分布的约简算法。首先,给出区间值决策系统β分布的概念和约简目标,并证明了提出的相关定理;然后,对于该约简目标构建了β分布约简的差别矩阵和差别函数,提出了区间值决策系统β分布约简算法;最后,使用14组UCI数据集进行实验验证。在数据集Statlog上,当相似度阈值为0.6,对象数目为100、200、400、600、846时,β分布约简算法的平均约简长度为1.6、2.2、1.4、2.4、2.6,基于差别矩阵的分布约简算法(DRADM)的平均约简长度为2.0、3.0、3.0、4.0、4.0,基于差别矩阵的最大分布约简算法(MDRADM)的平均约简长度为2.0、3.0、3.0、4.0、3.0。实验结果验证了所提β分布约简算法的有效性。