摘要

针对传统超视距空战威胁评估不能根据各类威胁因素的变化动态调整其对应权值的问题,引入前向反馈(back propagation,BP)神经网络,采用综合考虑主客观因素的结构熵权法确定各威胁指数权值并作为神经网络训练参数进行训练,提出了改进萤火虫算法(improved glowworm swarm optimization,IGSO)和BP神经网络相结合的空战动态权值计算方法。该算法采用改进萤火虫算法优化BP网络的权值和阈值,优化后的BP网络能更好地计算不同态势下的威胁指数权值,从而根据威胁估计模型进行威胁评估。以某一时刻预测多无人机空中对抗时的威胁度为想定,分别采用结构熵权法和IGSO-BP进行仿真计算。结果表明:结构熵权法能够科学合理地计算各威胁指数权值,IGSO-BP算法可有效解决空战目标威胁评估问题,且所提算法与现有几种算法相比在可靠性和准确性上都有明显提高。

  • 单位
    空军工程大学信息与导航学院