摘要
针对植被茂密且地形陡峭地区的人工滑坡隐患识别难题,提出了耦合变化检测与深度学习的人工滑坡隐患自动识别思路,构建了由影像光谱、NDVI、土地利用、高程、坡度和地表覆被变化组成的隐患识别指标体系,建立深度学习卷积神经网络CNN算法,并在植被茂密、地形陡峭的河北省涉县、邢台县和宽城县等地区进行了应用验证,自动识别出2016~2020年间出现的人工滑坡隐患134处。目视验证和野外调查验证结果表明:该方法识别精度为91.9%,F1分数值为93.6%。此方法在广袤地区具有普适性,为滑坡隐患自动识别提供了新思路,为人类工程活动的合理规划提供了科学依据。
-
单位河北地质大学; 中国地质大学(武汉)