摘要
聚类分析是数据挖掘中一项重要的技术,通过对多维用户行为的聚类分析,可以从用户层面来帮助管理人员得到更为精确和有效的用户评价信息。该文首先从用户行为数据中提取多维用户行为特征,之后采用基于互信息的无监督特征选择(UFS-MI)模型对提取的特征进行排序、筛选并确定权重,得到每个用户行为的加权特征向量。根据用户行为之间的相似性构造网络,然后通过Blondel社团划分算法对用户行为网络进行聚类分析。在某公交线路的实证数据集上的实验结果表明,该方法的准确率为92%,比传统聚类算法K-means的准确率有明显提升,研究结果可以为公交公司的管理层在进行统一管理和培训时提供参考。本文的工作拓展了网络科学在多维用户行为数据聚类分析的应用范围,丰富了多维驾驶行为数据聚类分析的思路,为决策者提供参考依据。
- 单位