摘要

为解决流程制造工艺参数优化面临的多工序耦合模型构建复杂、多目标冲突分析困难、实时和准确性难以保障等问题,提出一种融合GRU-Attention与鲸鱼算法的流程制造工艺参数云边联动优化方法。设计了适用于多工序耦合生产的训练计算云边协同架构,通过设备边缘节点与云平台的高效协同,完成了预测模型和优化模型的云端训练,边缘端数据收集、模型下载和调用计算。在此基础上,建立了基于GRU-Attention多层神经网络的生产工艺质量预测模型,将输出质量指标作为适应度,调用鲸鱼算法对生产工艺参数进行全局寻优,获得不同工序最优工艺参数组合,实现流程生产不同工序加工质量的实时预测和综合优化。最后,以某流程制丝生产线为例进行了实验验证,结果表明,所提基于深度学习的云边联动方法可实现生产质量的综合动态优化,同时可降低工艺参数调控任务的完成时间。

全文