摘要

睡眠呼吸暂停综合征(SAS)是常见的慢性呼吸障碍疾病,常伴随着多种并发症,严重困扰着人类健康。基于可穿戴设备的容积血流脉搏波(PPG)的SAS检测方法引起了广泛关注,具有低成本、低负荷、穿戴方便等优点。针对可穿戴PPG信号干扰更大的问题,提出一种多任务多注意力残差收缩卷积神经网络的睡眠呼吸暂停检测方法。首先,利用智能手环设备,收集了92例手腕部的PPG睡眠数据;其次,设计了一种残差多注意力机制卷积模块,高效地融合了网络在时间域与通道域的双重重要特征;然后,引入残差收缩卷积模块来抑制信号噪声以及网络的冗余特征。以这两种模块的结合构建了用于特征提取的骨干网络。结果表明,片段检测的准确率,敏感性以及特异性分别达到了81.82%,70.27%以及85.81%;个体检测的准确率,敏感性,特异性分别达到了95.65%,88.89%以及97.30%。所提出的模型具有优异的检测性能,有望嵌入到可穿戴设备中。

全文