摘要

针对苹果贮藏品质预测复杂、精度低的问题,设计了基于环境气体信息的BP神经网络苹果贮藏品质预测。首先分析了贮藏环境中温度、气体体积比与苹果理化特性指标的相关性,再通过对苹果的贮藏温度、气体(氧气、二氧化碳)体积比和理化特性指标(硬度、可溶性固形物含量、总酸含量、水分含量)进行检测,将16组温度和气体体积比数据作为BP神经网络的输入,理化特性指标分别作为BP神经网络的输出,对建立的BP神经网络进行训练。训练后用5组非训练样本进行试验验证,结果表明用BP神经网络模型预测苹果贮藏品质的预测值与实测值相对误差在5%以下,可以满足苹果贮藏品质预测的精度要求。