摘要
为了提高在复杂背景下人体图像分割的精度,提出了一种新的人体图像分割算法.该算法针对简单线性迭代算法(SLIC)在进行超像素块分割时需指定像素块个数的问题,借鉴CV能量模型,通过将图片极小化为多个区域进行水平集迭代分割,从而构造出自适应的超像素块,使得分割后的每个超像素块更贴合图像中的单个色块.然后结合人体平均模板,在图片上标记出感兴趣的人体标准姿势区域,提高了算法对复杂背景的抗干扰能力.最后利用k-means聚类算法将每个超像素块作为节点进行聚类,实现标准人体图像分割.在不同环境下采集多组图片进行实验,结果表明:该算法在保证了图像分割效率的情况下,提高了人体标准姿势的分割精度,对色度丰富的复杂背景抗干扰能力强.
- 单位