摘要

运用长短期记忆神经网络(LSTM)对电池的电压、电流、荷电状态(SOC)进行预测。考虑驾驶行为对电池组工作状态的影响,确定了含加速度、车速、电压、电流、SOC在内的多参数LSTM模型;根据中国亿维新能源车辆云平台数据,采用Adam优化算法完成对LSTM模型的训练、测试与预测。结果表明:多参数LSTM模型可有效预测电池的SOC和电压变化状态,电流均方误差由14.848%降到3.192%。

  • 单位
    湖北汽车工业学院