摘要

针对目前深度学习方法应用于医学图像配准精度不高的问题,提出了增加低分辨率辅助特征的无监督3D卷积神经网络的脑部图像配准模型。使用无监督学习的卷积网络回归出位移场,再通过空间变换层对浮动图像进行变换,然后根据构建的损失函数优化网络参数,实现端到端的无监督学习。通过添加注意力模块,在网络对应层间的连接中加入低分辨率的辅助特征,增加结构特征的同时减少多余的背景信息。方法与无监督的U-Net和VoxelMorph在MICCAI2012多图谱数据中比较,结果表明,有更高的配准精度和更快的配准速度,且不需要专家标注信息,因此在医学图像配准上具有较好的应用潜力。

全文