摘要
针对大部分降水临近预报产品无法兼顾高覆盖率、高准确率及低成本的问题,提出一种基于室外监控图像和深度神经网络能预报未来1h降水强度的方法。设计双流3D卷积神经网络来提取图像降雨信息的高维特征。该网络在低计算代价下自适应产生局部信息,并通过双损失函数从整体和局部统筹网络,提取降雨信息的时间特性和空间特性。实验结果表明,在降水强度预报领域,基于双损失函数的神经网络优于单损失函数。所提网络的误警率、命中率、临界成功指数、准确率在多数情况下优于其他模型。在模型效果可视化方面,所提网络能有效提取降水图像的特征信息。所提降水临近预报方法有能力进行精细且低成本的降水临近预报。
-
单位福州市气象局; 福建农林大学