摘要

CCD损伤状态与“猫眼”回波强度和偏振度为复杂非线性关系,无法单独根据强度或偏振度数值正确评估CCD损伤与否。结合多源信息融合技术与机器学习,利用适合非线性数据分类判别的KNN、K-SVM和PNN三种方法对CCD损伤状态评估方法进行研究。分别进行了近、远距离“猫眼”回波探测实验,以回波强度、偏振度信息和CCD实际损伤信息作为输入数据,分别对三种方法进行了训练,对比了训练的三种方法的评估测试结果,包括评估点的错误数量、错误率及评估时间,发现室外复杂环境时通过选择最优平滑因子σ的PNN方法错误率最低,在考虑实际评估允许时间范围内,PNN方法最适合用于基于“猫眼”回波信息的CCD损伤状态评估应用。