摘要

针对无线传感器网络(WSN)中传感器自身安全性低、检测区域恶劣及资源受限造成节点采集数据异常的问题,提出一种基于图信号处理的WSN异常节点检测算法。首先,依据传感器位置特征建立K-近邻(KNN)图信号模型;然后,基于图信号在低通滤波前后的平滑度之比构建统计检验量;最后,通过统计检验量与判决门限实现异常节点存在性的判断。通过在公开的气温数据集与PM2. 5数据集上的仿真验证,实验结果表明,与基于图频域异常检测算法相比,在单个节点异常情况相同条件下,所提算法检测率提升7个百分点;在多个节点异常情况相同条件下,其检测率均达到98%,并且在网络节点异常偏离值较小时仍具有较高的检测率。