摘要

在高光谱图像中混合像元普遍存在,这极大地阻碍了高光谱遥感技术的发展进程,因此,在利用光谱图像的过程中,如何准确高效地进行混合像元解混是一个关键问题。对于高光谱图像混合像元分解,使用原始的非负矩阵分解(Nonnegative Matrix Factorization,NMF)算法面临一些困难:首先,其目标函数为非凸函数,难以求解得到全局最优解;其次,混合像元中并不存在纯像元。为了解决这些问题,文中提出一种新的算法——基于双图正则的半监督NMF(Dual graph-regularized Constrained Nonnegative Matrix Factorization,DCNMF)混合像元解混算法。该算法采用了梯度下降法和迭代更新法则,既考虑了高光谱数据流形与光谱特征流形的几何结构,又能跳出局部极值,从而求解得到全局最优解。通过真实的高光谱图像数据仿真实验表明,DCNMF算法能够准确高效地进行混合像元分解,改善了解混效果,提高了解混精度,节约了计算时间,加快了收敛速度。