摘要
进化优化具有优异的全局搜索能力,已成功应用于建筑节能设计问题.然而,由于需要借助代价高昂的建筑能耗软件不断评价个体,现有建筑节能设计进化算法普遍存在运行代价高的问题.鉴于此,提出一种面向建筑节能设计的多代理辅助多目标进化优化算法,简称MS-MOEA/D.首先,依据MOEA/D的目标分解特征同时构建多个基础代理模型;然后,针对每个待评估个体,自动选择合适的基础代理模型,并使用它们的集成结果预测该个体的目标值,达到提高其预测精度的目的.同时,在进化过程中自主确定基础代理模型的更新时机和规模,以降低代理模型的管理成本;最后,将所提出MS-MOEA/D与建筑能耗模拟软件EnergyPlus相融合,建立面向建筑节能设计的多目标进化优化仿真平台,并将该平台应用于中国北京地区常见居民和办公建筑节能设计实例中.通过与7种典型多目标进化算法进行对比,结果表明, MS-MOEA/D在显著降低计算代价的基础上能够得到高竞争力的Pareto最优解集.
- 单位