摘要
红外目标识别系统成为航空航天、无人驾驶等军事和民用领域中一项至关重要的技术。红外目标识别算法是红外目标检测识别系统中的核心之一。传统红外目标识别技术往往依赖人为的特征选择,无法对复杂困难的红外目标实现高效、准确的识别。本文提出了训练中反量化与通道级量化相结合的量化策略,有效减小量化误差对网络模型性能的影响。实验结果表明:本文提出的低比特量化算法在红外数据集上有着优异的表现。在硬件部署方面,本文提出了更加高效的卷积计算单元,提高了硬件资源的利用率,同时也达到了更高的峰值性能。最终,在PYNQ-Z2嵌入式现场可编程门阵列(FPGA)上进行验证,系统在150 MHz的时钟频率下达到了90.6 GOP/s的峰值吞吐率,其功耗为2.5 W。
-
单位上海交通大学; 上海航天控制技术研究所