摘要
深度探索用户负荷的用电特性是面向电力大数据趋势下电力市场精细化发展的迫切需求。该文提出一种计及数据类别不平衡的用户负荷典型形态提取模型,适用于电力系统负荷数据量大、缺乏训练标签的情况。首先,通过K-medoids算法将局部数据聚类获取类别标签作为训练集。针对训练集部分类簇数据样本过小,采用基于聚类结果的过采样方法进行类别平衡。负荷数据分类采用基于Spark的分布式神经网络基分类器集成学习方法。最后,通过形态互相关性提取典型负荷形态特征。算例选取模拟日负荷数据和爱尔兰实测负荷数据,对比K-means聚类和K-medoids+串行BPNN分类性能,验证了所提算法的有效性和实用性,同时也证明了该方法对于负荷分类所具有的效率优势。
-
单位清华四川能源互联网研究院; 四川大学