摘要
为解决自动厚度控制(automatic gauge control, AGC)系统反馈滞后、耦合强、厚度偏差大等问题,提出了一种基于食肉植物算法(carnivorous plant algorithm, CPA)的在线顺序极限学习机(online sequential extreme learning machine, OSELM)预测算法。首先,基于从现场采集的相关数据,建立了OSELM在线厚度预测模型。然后为了提高模型的准确性及稳定性,采用CPA方法优化OSELM的权重和偏置。在此基础上,运用自学习方法进一步提高模型的预测精度。最后,通过实验验证基于CPA-OSELM预测模型的有效性。实验结果表明:基于CPA-OSELM的方法能够对不同规格带钢的出口厚度进行高精度在线预测,预测结果可用于提升AGC模型的控制精度,为提升带钢产品质量奠定基础。
- 单位