摘要
目的针对现有肺结节检测算法存在的因肺部计算机断层扫描(computed tomography,CT)图像肺结节与周边组织复杂性导致结节本身结构差异性不明显的问题,以及特征提取网络多次下采样造成图像分辨率降低进而导致检测结果差、仅使用网络顶层特征图进行预测造成图像空间信息丢失进而导致小结节漏检等问题,提出了一种基于注意力机制和特征金字塔的肺结节检测算法。方法根据语义与空间特征补偿机制以及卷积神经网络中网络深度所提取特征的信息量不同,在以Res Net为骨干网络的特征提取网络中设计通道—空间注意力机制,尽可能同时获取含有较多上下文语义以及空间位置信息的特征信息。在网络预测部分设计特征金字塔网络,将高维带有丰富语义信息的特征图与低维带有位置信息的特征图融合进行多尺度预测,增强网络对于小结节以及近血管结节等非显著性目标的检测性能。结果在LUNA16(lung nodule analysis 16)数据集上进行十折交叉验证显示,当平均假阳性个数为25.99时敏感度达到了97.13%,与基准方法相比,敏感度提高了2.53%,平均假阳性降低了28.54,实现了高敏感度低假阳性;在0.125、0.25、0.5、1、2、4、8这7个假阳率点的敏感度平均值为0.854,其中在每个扫描4次和8次假阳性时敏感度分别达到了0.940和0.951,其效果优于主流的结节检测方法。结论提出的结节检测模型,可以提高对3 10 mm小结节、近血管结节等非显著性目标的检测性能,并具有较低的假阳率。
-
单位宁夏回族自治区人民医院; 北方民族大学