基于Transformer与自适应空间特征融合的群猪目标检测算法研究

作者:耿艳利; 林彦伯; 付艳芳; 杨淑才
来源:东北农业大学学报, 2023, 54(01): 88-96.
DOI:10.19720/j.cnki.issn.1005-9369.2023.01.010

摘要

针对深度学习群猪目标检测算法精确度低和模型占用内存大等问题,提出基于Transformer与自适应空间特征融合的群猪目标检测算法。搭建群猪图像采集设备,以视频帧作为数据源,提取关键帧并剔除模糊图像,采用Labelme标注图像中猪只,建立群猪图像数据集;将Swin Transformer网络作为主干网络,在FPN后引入自适应空间特征融合方法作为特征融合网络;提出RIoU作为预测框回归损失计算方法。结果表明,该算法在精确率、召回率、F1值和平均精确率指标方面分别达到93.6%、97.2%、0.953、96.5%,检测速度为34.9 Hz且模型大小仅为20.6 MB,与YOLOv4相比上述指标分别提高1.5%、1.7%、1.6%、2.4%,模型占用内存量缩小12.5倍,检测速度提高13 Hz。研究有助于智能化猪场建设,为养殖场动物计数和行为识别等方面提供技术支持。