针对单个神经网络泛化能力差、对不同样本预测精度波动大的问题,提出了一种基于即时学习集成神经网络方法。首先,基于训练样本,建立多个不同的神经网络模型。其次,根据即时学习的思想,在对样本进行预测时,在训练样本中寻找与预测样本最接近的若干邻近样本,根据各网络对邻近样本的训练误差,即时形成各神经网络的集成权重,实时构造集成神经网络模型,对预测样本进行预测。最后,将该方法应用于初顶石脑油干点的预测,相比于文献中提出的方法,得到了更好的预测结果 。