摘要

为有效降低电力系统运行数据中样本不平衡问题对基于机器学习的暂态稳定评估方法分类性能的影响,提出一种基于自适应权重宽度学习系统(adaptive weighted-broad learning system,AW-BLS)的电力系统暂态稳定评估方法。首先,在BLS的宽度结构中引入权重因子以改进BLS模型,有效降低了两类样本数量差距对学习过程的影响。然后,利用电力系统故障前的稳态运行数据对AW-BLS模型进行训练。最后,通过算例分析表明,所提方法在数据集存在样本不平衡问题时具有良好的评估准确率,同时还拥有较好的泛化能力。