采用贡献度与相关性分析(correlation analysis)相结合的办法从目前最常用的244种股票技术指标中提取最优技术指标,进而利用梯度提升树(GBDT)算法对股票的趋势进行预测.对由贡献度、相关性分析与GBDT算法构成的组合模型(简称GBDT组合模型)进行实证分析,首次将GBDT算法应用于沪深300股票的预测.对由不同算法构成的组合模型的预测精度也进行比较分析.实验结果表明,GBDT组合模型在预测精度上优于线性回归组合模型及随机森林组合模型.