摘要
鉴于情感脑电蕴含丰富的空间模式特征,提出一种基于二维空间域表征可视化的情感识别方法。首先,提取多通道脑电Gamma频段的微分熵(Differential Entropy, DE)特征并根据导联位置映射至9×9的二维空间进行拓扑重构,使用三次插值方法进一步提高空间域特征图的分辨率;然后,针对性地设计了一种深度残差网络(Residual Network, ResNet)模型作为情感脑电解码器对情感脑电信号(Electroencephalogram, EEG)进行深层抽象特征的自动提取和端到端分类;最后,通过梯度加权类激活映射(Gradient-weighted Class Activation Mapping, Grad-CAM)方法对输入特征图进行可解释性分析,依据热力图分布定位对特定情感状态识别具有较大贡献的空间脑区。在SEED数据集上进行了相关情感识别实验,三种情感类别分类平均准确率为94.88%,达到了较先进的性能。
- 单位