摘要
基于深度学习的人体跟踪与异常行为识别算法在实现的过程中,都需要对人体目标进行特征提取。为了优化两次重复的特征提取过程,提高网络工作效率,提出了人体跟踪与异常行为识别联合算法。通过实时多域卷积神经网络(RT-MDNet)实现人体目标的跟踪,以不同的异常行为作为人体跟踪的不同操作域,提取人体目标的共性特征,实现人体的实时跟踪。同时,抽取RT-MDNet网络卷积层输出的高维特征图谱,将特征图谱与长短时记忆网络(LSTM)相结合,通过把握特征间的时序信息,实现异常行为的分类。在中科院提供的CASIA行为分析数据集中选取了6种异常行为对网络模型进行训练和测试。实验结果表明,该模型能够准确实时地跟踪人体目标,同时也能将跟踪目标的行为进行分类,识别率达到89.7%。基于深度学习的人体跟踪与异常行为识别联合算法,将人体目标的特征共享于跟踪与识别,实现了跟踪与识别的有效结合。
-
单位自动化学院; 沈阳航空航天大学