摘要

钢结构健康监测过程中的应力数据缺失会干扰监测各环节的运行状态,无法保障施工阶段的安全,因此解决数据缺失问题至关重要。钢结构在施工阶段应力应变监测中,由于受到外界诸多复杂因素的影响,导致监测数据不准确、缺失以及局部应力数据的重构值与真实值偏差较大等问题。采用改进BP神经网络分别对300组和30组钢结构应力应变监测数据进行重构,并对改进BP神经网络的数据重构方法进行适用性分析。结果表明:相比线性回归法,改进BP神经网络法进行离散型缺失数据的重构平均误差降低0.7%,特别是对于局部缺失数据,改进BP神经网络法的重构精度更高,平均局部误差降低2.2%;为达到较好的重构精度,使用改进BP神经网络对缺失数据重构时,数据的缺失率不宜超过20%;改进BP神经网络法可为钢结构应力缺失数据重构以及结构健康监测提供技术支持,具有较好的实用性。

全文