摘要

边坡的位移预测对其稳定性的预报具有十分重要的意义,从基于相空间重构的BP神经网络预测方法对位移时间序列进行了分析,对相空间重构的参数延迟量以及嵌入维数进行了论述,将预测结果与传统的BP神经网络模型的预测结果进行了比较。结果表明,基于相空间重构的BP神经网络具有更高的精度,是一种优秀的预测方法。