摘要
多输入多输出(Multiple Input Multiple Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel 矩阵并施加Schatten-p 范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)算法求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,本文方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。
- 单位