摘要
针对单一生物识别方法存在的固有局限性,利用人脸和虹膜双生物模态信息,提出一种基于注意力机制和低秩多模态融合的身份识别模型(attention mechanism and low-rank multimodal fusion, ALMF)。在模型的人脸和虹膜特征提取网络中均嵌入改进的混合注意力机制(I_CBAM),增强有用特征的提取。利用模态特定低秩因子完成低秩多模态特征级融合(low-rank multimodal fusion, LMF),解决传统特征拼接方式无法充分实现各模态特征的互补、容易造成冗余信息和维度灾难等问题。使用简单高效的余弦距离完成特征模板的比对实现身份识别。实验结果表明,ALMF模型相比单一生物特征识别和传统融合识别算法具有更强的鲁棒性和准确率。
- 单位