多时间尺度一致性的弱监督时序动作定位

作者:郭文斌; 杨兴明; 蒋哲远; 吴克伟; 谢昭
来源:计算机工程与应用, 2023, 59(10): 151-161.
DOI:10.3778/j.issn.1002-8331.2201-0233

摘要

由于弱监督时序动作定位模型使用视频级的标签作为监督信号,模型在识别出动作实例中最具区分性的视频片段时,也会将和视频级标签有关的背景片段误认为是动作,难以产生完整的动作提议。为了进一步检测动作片段,通过分析动作片段在多时间尺度上标记的一致性,提出了一种多时间尺度一致性的弱监督时序动作定位方法。对输入的视频帧提取RGB和光流的特征,设计一种多时间尺度的模块,使用不同尺寸的卷积核建模视频的时序关系。通过估计多时间尺度特征的时间类激活图,并对多分支的时间类激活图进行融合,获得多时间尺度一致性的动作预测标签。为了进一步优化模型预测的动作标签,采用迭代优化策略,在每次迭代中更新预测标签,并为模型训练提供有效的帧级监督信号。在THUMOS14和ActivityNet1.3数据集上进行实验验证,实验结果表明,方法性能优于现有弱监督时序动作定位方法。

全文