摘要

针对目前的点云分类是直接将原始点云作为输入并提前预设点云分类数存在的缺陷,本文提出一种改进的方法,在输入前对原始点云进行预处理,对密集的点云降低密度以减少计算量,对稀疏的点云进行三角形内部线性插值以便提取完整的特征,以此提高点云分类的精度。将预处理后的点云数据输入SOM-K(K-Means优化的自组织映射神经网络)模型进行聚类,再将聚类后的点云数据并行通过PointNet网络进行点云数据特征的提取,这种先进行聚类后、进行特征提取的方法可以充分保留点云在点云空间中的分布特性,并且不额外增加数据特侦提取的计算时间。