摘要

基于光子计数探测器的能谱CT在材料分解、组织表征、病变检测等应用中具有巨大的潜力。在重建过程中,通道数的增加会造成单通道中光子数减少,从而导致重建图像质量下降,难以满足实际需求。本文从能谱CT重建的角度出发,将广义总变分向矢量延伸,利用奇异值的稀疏性,促进图像梯度的线性依赖,提出一种基于核范数的多通道联合广义总变分的能谱CT重建算法。在图像重建过程中,多层共享结构信息,同时保留独特的差异。实验结果表明,本文提出的算法在抑制噪声的同时,能够更有效地恢复图像细节及边缘信息。