摘要
为了解决现阶段水稻发育期信息的获取主要依靠人工观测的效率低、主观性强等问题,该研究提出一种基于Rectified Adam(RAdam)优化器的ResNet50卷积神经网络图像识别方法,开展水稻关键生育期的自动识别。连续2a对12块试验田的水稻物候特征进行持续自动拍摄,对采集的水稻图像进行预处理,得到水稻各发育期分类图像数据集;采用ExG因子和大津法(Otsu)算法相结合的方法对水稻图像分割,减小稻田背景干扰;对比分析了VGG16、VGG19、ResNet50和Inception v3四种模型下水稻生育期图像分级识别的性能,选取性能较优网络模型并进行了网络参数调优;对比试验了不同优化器下模型准确率和损失值的变化,选取了RAdam优化器。结果表明,采取基于RAdam优化器卷积神经网络构建的模型,在真实场景下分类识别准确率达到97.33%,网络稳定性高、收敛速度快,为水稻生育期自动化观测提供了有效方法。
-
单位安徽省农村综合经济信息中心; 安徽省农业