摘要

传统的数据集成挖掘方法在集成与挖掘两个步骤之间存在较大误差,导致大数据出现乱码问题,数据显示不全。为解决上述问题,提出基于半监督深度学习法的大数据集成挖掘方法。利用有监督与无监督深度学习间的机器学习,组成半监督深度学习。利用支持向量数据组建立超球体。依据超球体结合标记样本,组建半监督深度学习数据检测模型,筛选样本特征词,利用半监督深度学习方法训练单分类SVDD模型,实现网络大数据集成挖掘。仿真结果证明,所提方法能够高精度、高效的对大数据完成集成挖掘,具有理想的应用性能。