摘要

针对由于人脸姿势、光照不均、拍摄环境、拍摄设备等内外部因素造成图像分辨率低的问题,提出融合注意力机制的高分辨人脸识别图像重建模型。首先以低分辨率人脸图像对作为两个生成器输入,通过残差块和注意力模块堆叠网络提取人脸特征信息,进而生成高分辨率人脸图像。训练中使用一个鉴别器来监督两个生成器的训练过程。利用Adam算法对鉴别器、生成器以及对抗损失函数进行迭代优化来提升网络模型性能。模型在CASIA-WebFace数据集上进行训练,在CASIA-WebFace、CelebA、LFW数据集上进行测试。实验表明,注意力模块可有效弥补浅层卷积神经网络提取特征时因偏向局部关系建模而缺乏对全局信息学习的不足,能学习利于重建高分辨率图像的特征信息。本模型重建人脸有较好的视觉效果,并且具有保留人脸身份信息的特性。