摘要
针对核磁共振图像中存在莱斯噪声的现象,提出一种基于无噪图像块先验的MRI低秩分解去噪算法。该算法首先利用高斯混合模型学习无噪核磁共振图像块的先验;然后将带有无噪核磁共振图像块先验的高斯混合模型用于噪声核磁共振图像块聚类,并将聚类后每个高斯类中的核磁共振图像块叠在一起构成低秩矩阵并对其进行低秩分解操作来达到除去噪声的目的;最后根据去噪后的数据重建清晰核磁共振图像。实验结果表明相较于各项异性滤波,非局部均值滤波和权重核范数最小化复原算法,文中方法在PSNR值、SSIM值和视觉上有较大提升,在去除噪声的同时,能较好地保留图像本身的纹理细节信息。
-
单位成都信息工程大学; 电子工程学院