摘要

水轮发电机转子振动故障识别是水电站运维的重难点问题,为此提出一种基于转子振动信号的故障识别方法。首先针对发电机转子的非平稳和非线性振动信号,采用奇异值分解(SVD)并结合能量差分谱理论进行降噪预处理;对预处理数据使用连续小波变换(CWT)转换为时频图并形成图像数据集;然后将该图像数据集作为卷积神经网络(CNN)输入,通过CNN多层池化及卷积形成分布式故障特征表达,最终实现发电机转子故障模式识别和分类。经实验验证,该方法准确率达到99.5%以上,能有效识别出发电机转子的故障类型。

  • 单位
    三峡大学; 大唐观音岩水电开发有限公司