基于多光谱通道注意力和双向特征融合的乳腺肿块检测

作者:陈罗林; 周煜松; 徐胜舟*
来源:中南民族大学学报(自然科学版), 2023, 42(01): 111-119.
DOI:10.20056/j.cnki.ZNMDZK.20230116

摘要

乳腺钼靶X线摄影是诊断乳腺疾病的有效手段,计算机辅助诊断系统在乳腺肿块检测中起着重要作用,针对检测过程中易出现漏检、误检导致精度不理想的情况,提出了一种改进的RetinaNet乳腺肿块检测算法.首先,在RetinaNet的基础上对特征提取部分进行改进,在每个残差块中引入多光谱通道注意力机制,使网络能更加关注到目标区域;然后,在特征融合部分,以两种不同方式添加一条自底向上的路径,并通过横向连接最终实现深浅层特征的双向融合,加快浅层信息流通,使得到的特征信息更加丰富.实验表明:改进后的算法在乳腺钼靶图像的肿块检测中具有良好的检测效果,既减少了漏检率,平均精度也提升了3.2%,并且相比其他出色的检测算法,也具有一定的优势.

全文