摘要
视频目标跟踪是计算机视觉的基础问题之一。近来由于discriminative correlation filter(DCF)跟踪器的高效性和鲁棒性,出现了许多基于DCF的目标跟踪算法。为了克服DCF跟踪器对运动模糊目标的不适应性,本文提出了一种利用Lasso约束并融入光流信息的目标跟踪算法。首先在跟踪器抽取特征通道块中融入光流特征。然后在通道块之后进行多特征融合。其次利用Lasso约束DCF跟踪器的目标函数。考虑到所约束的目标函数在定义域上不连续和目标跟踪的优化效率。最后,采用块坐标下降算法来优化所约束的目标函数。实验结果表明,与基于DCF视觉跟踪算法相比,所提出的算法可以有效的处理运动模糊目标,实现复杂环境下鲁棒的视觉目标跟踪。
- 单位