摘要
遥感图像目标检测一直是遥感图像领域中的热点和难点问题,旨在分类和定位感兴趣目标。近年来卷积神经网络理论技术的快速发展,有效地解决了传统目标检测方法特征提取不足的问题。在公开的遥感数据集RSOD-Dataset上,基于YOLOv3算法模型进行目标检测,为了适应遥感图像中目标小、背景复杂等难分类样本的特点,在检测模型中引入难易样本平衡因子来改变不同类别的损失权重,从而进一步提高遥感图像检测精度。为了证明这里改进方法的有效性,进行了一组对比消融实验。实验结果表明,改进的算法比YOLOv3算法的平均检测精度提高了6%,尤其是对于背景复杂的立交桥类别,平均检测精度有了明显的提高。因此通过改进YOLOv3进一步平衡了简单样本和难例样本的损失权重,有效地提高了遥感图像目标检测精度。
- 单位