摘要

针对密集杂波下现有的多机动目标跟踪算法计算量大且性能严重衰退的问题,提出了联合幅度信息的多模型标签多伯努利(AI-MM-LMB)滤波器。首先,对目标状态进行扩展,引入幅度信息;然后,建立幅度信息及位置信息的联合量测似然函数;最后,基于MM-LMB滤波器框架,给出新的更新方程。仿真实验结果表明:低杂波下,AI-MM-LM算法同MM-LMB算法跟踪性能相当;高杂波下,AI-MM-LMB算法性能明显优于MM-LMB算法。